正誤表

書 名:改訂2版 電験3種 New これだけシリーズ これだけ理論

コード: 978-4-485-11941-9 版 刷: 改訂 2 版第 2 刷 発行日: 2021 年 7 月 1 日

正誤表作成日: 2023年2月13日

ページ	訂正箇所	誤	正
55	問 1 図を右図に 差し替え 5 A の矢印, 波 形が少しずれ ていました	$(V)(A)$ e i $200 V$ i $5\pi \frac{11\pi}{3}$ $\frac{\pi}{6}$ $\frac{\pi}{3} \frac{\pi}{2} \frac{2\pi}{3} \frac{5\pi}{6}$ $\frac{7\pi}{6} \frac{4\pi}{3} \frac{3\pi}{2}$ $\omega t (rad)$	
232	第6図中	F	<i>F'</i> プライム (′) を追加
341	問 2 3 行目	= 1 083 W	= 1 083 W = 1.08 kW (赤字を追加)
407	第1図 図を右図に 差し替え 交流コレクタ 電流①の向き を逆に	$\begin{bmatrix} R_{\rm A} & R_{\rm C} \\ \\ v_{\rm i} & R_{\rm B} \end{bmatrix} \begin{bmatrix} B \\ R_{\rm E} \end{bmatrix}$	
409	第1図中	$V_{ m GS}$	$V_{ m gs}$
	4 行目	ここで、 $V_{\rm G}=0$ であるから、	ここで、FET はゲートに電流 流れない.したがって、 R_G に 流れる電流は 0 で、 $V_G = 0$ で あるから、 $($ 赤字を追加 $)$

正 誤 表 書 名: 改訂 2 版 電験 3 種 New これだけシリーズ これだけ理論

コード: 978-4-485-11941-9 版 刷:改訂2版第1刷 発行日:2019年10月28日 正誤表作成日: 2023年2月13日

ページ	訂正箇所	誤	正	
5	6行目	8式=9式とすると,	(8)式=(9)式とすると,	
	最下行(第 10, 11 図の上) の式番号	10	(10)	
6	2 行目の式番号	(1)	(11)	
	3 行目	⑩式=⑪式とすると,	(10)式=(11)式とすると,	
55	問 1 図を右図に差し替え 5 A の矢印、波形が少しずれてい ました	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		
65	問4 図1 電源の記号	Ϋ (A)	<i>Ÿ</i> (V)	
161	下から9行目	$\frac{N}{S} = \frac{Q / \varepsilon_0}{4\pi \varepsilon^2}$	$\frac{N}{S} = \frac{Q / \varepsilon_0}{4\pi r^2}$	
182	最上行に右の2行を追加	2 のコンデンサ C_1 の端子電圧を V_2 $[V]$ とすると、電圧比 $\left rac{V_1}{V_2} ight $ の値として、最も近いのは次のうちどれか.		
206	最下行	となり, (1)式を導くことができる.	となり, (9)式を導くことができる.	
230	下から2行目	$v = at = \frac{eEt}{m} \text{(m/s}^2\text{)}$	$v = at = \frac{eEt}{m}$ (m/s)	
232	第6図中	F	<i>F</i> ′ プライム (′) を追加	
235	8 行目	$m_0 a = \boxed{(\mathcal{T})}$	$m_0 a = \boxed{(\overrightarrow{r})} \cdots \cdots \boxed{1}$	
305	問 10 図 2	$\frac{\Delta V_{\rm d}}{\Delta V_{\rm gs}} = 6 \text{ mS}$	$\frac{\Delta I_{\rm d}}{\Delta V_{\rm gs}} = 6 \text{ mS}$	
316	2 行目	$= \frac{20}{28.33 + 1.0} = 0.522 \text{ A}$	$= \frac{20}{28.33 + 10} = 0.522 \text{ A}$	
327	13 行目(2)式	$\tan\frac{\frac{1}{\omega C}}{R} = \cdots$	$\tan\frac{\pi}{3} = \frac{1}{\omega C} = \cdots$	
332	下から2行目	力率を θ とすると,	力率角を θ とすると,	
333	問8解説2行目	$I_{\rm q} = I \sin \theta = 37.5 \times 0.68 = 30 \text{A}$	$I_{\rm q} = I \sin \theta = 37.5 \times 0.8 = 30 \text{A}$	
	同6行目	$I_P = 40 - 22.5 = 17.5 \text{ A}$	$I_{\rm R} = 40 - 22.5 = 17.5 \text{A}$	
	同7行目	$\therefore R = \frac{E}{I_{\rm R}} = \frac{14.0}{17.5} = 8 \Omega$	$\therefore R = \frac{E}{I_{\rm R}} = \frac{140}{17.5} = 8 \Omega$	
335	下から6行目	$(L_1+L_2)-\omega_1^2L_1L_2$	$(L_1+L_2)=\omega_1^2L_1L_2\mathbf{C}$	
341	問2 3行目	= 1 083 W	= 1.083 W = 1.08 kW	
342	最下行	(3) $I_{\mathbf{p}}=V_{\mathbf{p}}/R$ となる.	(3) I _I =V _p /R となる.	
350	最下行	$C = \frac{I_{\rm C}}{3\omega E} = \frac{6.835}{3 \times 2\pi \times \frac{200}{\sqrt{3}}} = \cdots$	$C = \frac{I_{\rm C}}{3\omega E} = \frac{6.835}{3 \times 2\pi \times 50 \times \frac{200}{\sqrt{3}}} = \cdots$	
359	3 行目	4=30 I ₁ +···	4=30 <mark>I</mark> ₂ +···	
365	問 11 解答番号	(3)	(1)	

407	第1図 図を右図に差し替え 交流コレクタ電流①の向きを逆 に	$\begin{bmatrix} R_{\rm A} & R_{\rm C} \end{bmatrix} \downarrow \emptyset$ $\begin{bmatrix} v_{\rm i} & R_{\rm B} \end{bmatrix} \downarrow \emptyset R_{\rm E}$	
409	第1図中	$V_{ m GS}$	$V_{ m gs}$
	4 行目	ここで、 $V_{\rm G}=0$ であるから、	ここで、FET はゲートに電流流れない. したがって、 $R_{\rm G}$ に流れる電流は 0 で、 $V_{\rm G}=0$ であるから、 $($ 赤字を追加 $)$