改訂 2 版 ひと目でわかる危険物乙 4 問題集(改訂 2 版 3 刷) 正誤表

20251年3月3日改訂第2版第3刷発行

コード:21040

作成日:2025年7月7日

箇 所	誤	正
要点解説編 33ページ ④の(参考)	(参考) エチレングリコールはどんなところに使われるのか. ・ボリエステル機維の原料. 車の下凍液. タバコの葉の乾燥防止. ・ラーメンのつなぎ (かんすい) ラーメンの小麦のつなぎは、昔は卵であった. しかし戦後エチレングリコールが生産されるようになると、 卵の白身よりも、 価格の安いエチレングリコールが使われるようになった. エチレングリコールは毒性はないが、 骨や歯を溶かす性質が少しあるといわれているので、 連目の食事には注意をした方がよい.しかし、まれに卵麺のラーメン店がある. ここなら毎日でも食べに行きたい.	(参考) エチレングリコールはどんなところに使われるのか。 ・ボリエステル繊維の原料。車の不凍液。紙巻きタバコの保湿剤。 ・ラーメンのつなぎ(かんすい)約50年前 ラーメンの小麦のつなぎは、昔は卵であった。しかし戦後エチレングリコールが生産されるようになると、卵の白身よりも、価格の安いエチレングリコールも一時期使われるようになった。現在は「かんすい」の定義が炭酸カリウム、炭酸ナトリウム等のうち1種類以上含むものとされ、具体的な成分を表記する養務は免除されている。

改訂 2 版 ひと目でわかる危険物乙 4 問題集(改訂 2 版 2 刷) 正誤表

2021年10月28日改訂第2版第2刷発行

コード:21040

更新日:2024年5月15日

		更新日:2024年5月15日
箇 所	誤	Œ
要点解説編 30ページ 下段の囲み内	飽和(1 重結合) (例) エタン <u>CH₄</u>	飽和(1 重結合) (例) エタン <u>C₂H₆</u>
要点解説編33ページ (4の (参考)	(参考) エチレングリコールはどんなところに使われるのか。 ・ボリエステル機維の原料。車の不凍液。タバコの葉の乾燥防止。 ・ラーメンのつなぎ (かんすい) ラーメンの小麦のつなぎは、昔は卵であった。しかし職後エチレングリコールが生産されるようになると、卵の白身よりも、価格の安いエチレングリコールが使われるようになった。エチレングリコールは毒性はないが、骨や歯を溶かす性質が少しあるといわれているので、連日の食事には注意をした方がよい。しかし、まれに卵麺のラーメン店がある。ここなら毎日でも食べに行きたい。	(参考) エチレングリコールはどんなところに使われるのか。 ・ボリエステル機維の原料。車の下凍液。紙巻きタバコの保湿剤。 ・ラーメンのつなぎ(かんすい) 約50 年前 ラーメンの小麦のつなぎは、昔は卵であった。しかし職後エチレングリコールが生産されるようになると、卵の白身よりも、価格の安いエチレングリコールも一時期使われるようになった。現在は「かんすい」の定義が炭酸カリウム、炭酸ナトリウム等のうち1種類以上含むものとされ、具体的な成分を表記する養務は免除されている。
要点解説編 42ページ 保有空地の表	保有空地が必要な施設 製造所,屋内貯蔵所,屋外タンク貯蔵所, 簡易タンク貯蔵所,屋外貯蔵所,一般 取扱所	保有空地が必要な施設 製造所、屋内貯蔵所、屋外タンク貯蔵所、 簡易タンク貯蔵所、屋外貯蔵所、一般 取扱所、 <mark>移送取扱所</mark>
要点解説編 52 ページ 19 行目	(2) 保有空地 不要	(2)保有空地必要(ただし地中配管の場合は不要)
要点解説編 60ページ 8~9行目	…30 所要単位を能力単位という。 1 能力単位 =30 所要単位	…消火設備の能力を表す単位で、1所要単位につき1能力単位の消火設備が必要となる。
問題解説編 179ページ 問 19:アセト ンの引火点	5℃	<u>−20°C</u>

改訂2版ひと目でわかる危険物乙4問題集(改訂2版1刷)

正誤表

2020年10月28日改訂第2版第1刷発行

コード:21040

更新日:2025年7月7日

	更新日 : 2025 年 7 月 7 日		
 	誤	正	
要点解説編 30 ページ 下段の囲み内	飽和(1 重結合) (例) エタン <u>CH₄</u>	飽和(1 重結合) (例) エタン <u>C₂H₆</u>	
要点解説編 33ページ ④の (参考)	(参考) エチレングリコールはどんなところに使われるのか。 ・ポリエステル繊維の原料。車の不凍液。タバコの葉の乾燥防止。 ・ラーメンのつなぎ (かんすい) ラーメンの小麦のつなぎは、昔は卵であった。しかし職後エチレングリコールが生産されるようになると、卵の白身よりも、価格の安いエチレングリコールが使われるようになった。エチレングリコールは毒性はないが、骨や歯を溶かす性質が少しあるといわれているので、連日の食事には注意をした方がよい。しかし、まれに卵麺のラーメン店がある。ここなら毎日でも食べに行きたい。	(参考) エチレングリコールはどんなところに使われるのか。 ・ボリエステル機維の原料。車の不凍液。紙巻きタバコの保湿剤。 ・ラーメンのつなぎ(かんすい) 約50年前 ラーメンの小麦のつなぎは、昔は卵であった。しかし職後エチレングリコールが生産されるようになると、卵の自身よりも、価格の安いエチレングリコールも一時期使われるようになった。現在は「かんすい」の定義が炭酸カリウム、炭酸ナトリウム等のうち1種類以上含むものとされ、具体的な成分を表記する養務は免除されている。	
要点解説編 42ページ 保有空地の表	保有空地が必要な施設 製造所,屋内貯蔵所,屋外タンク貯蔵所, 簡易タンク貯蔵所,屋外貯蔵所,一般 取扱所	保有空地が必要な施設 製造所,屋内貯蔵所,屋外タンク貯蔵所, 簡易タンク貯蔵所,屋外貯蔵所,一般 取扱所, <u>移送取扱所</u>	
要点解説編 52 ページ 19 行目	(2) 保有空地······ <u>不要</u>	(2)保有空地必要(ただし地中配管の場合は不要)	
要点解説編 60ページ 8~9行目	…30 所要単位を能力単位という.1 能力単位 =30 所要単位	…消火設備の能力を表す単位で、1所要単位につき1能力単位の消火設備が必要となる。	
問題解説編 83 ページ 問 8 選択肢(2)	…どちらも酸素と化合しないからである.	…どちらも <u>通常の燃焼では</u> 酸素と化合しないから である.	
問題解説編 87 ページ 問 16 選択肢(2)	② 引火点は非常に低く、 <u>-10℃以下</u> である。	② 引火点は非常に低く, <u>-10℃</u> である.	
問題解説編 87 ページ 問 16 (2)の解説	(2)引火点は, <u>-30℃以下</u> である.	(2)引火点は, <u>-30℃</u> である.	
問題解説編 159ページ 問 16(3)の解説 右のものに変更	(3) ひっかけ問題なので注意する.「100°C以下」には、ガソ リンの引火点の「-40°C以下」も含まれるが、「-40°Cを 超え 100°C以下」の範囲も含まれてしまう. ガソリンの引火点は「-40°C以下」であり、「-40°Cを 超え 100°C以下」の範囲は含まないので、誤りとなる.		
問題解説編 179ページ 問 19:アセト ンの引火点	5℃	<u>−20°C</u>	
問題編 12 ページ 問 8 選択肢(2)	…どちらも酸素と化合しないからである.	…どちらも <u>通常の燃焼では</u> 酸素と化合しないから である.	
問題編 14 ページ 問 16 選択肢(2)	引火点は非常に低く, <u>-10℃以下</u> である.	引火点は非常に低く, <u>-10℃</u> である.	